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For a number of years, mathematics education
researchers have been promoting the introduction of
algebraic concepts in elementary and middle schools
(Warren & Cooper, 2006; Greenes et al., 2001; Kieran &
Chalough, 1993; Kieran, 1992, 1991). There is a belief
that an early introduction to algebra may ease the
transition from arithmetically based instruction in
elementary school to formal algebraic instruction in high
school (Kieran, 1992). As part of this new initiative,
mathematics education researchers have been
investigating how young children can think algebraically
when working with patterns (Yerushalmy & Shternberg,
2001; Noss & Hoyles, 2006; Mason, 1996; Lee, 1996). 

In this article, I outline the results of a three-year
research study that tracked the development of algebraic
thinking in students from Grade 4 to Grade 6. Although I
was working with elementary students, the concepts they
considered were well beyond the current Ontario
elementary curriculum expectations and incorporated
concepts formally taught in the intermediate and senior
grades. In the following sections, I introduce a sequence
of activities that support students—from working with
linear growing patterns, patterns whose terms grow by a
constant value, to solving linear equations.

One of the goals of my work has been to introduce
students to various representations of l inear
relationships. Understanding the connections among
representations underpins the ability to predict changes
in one representation based on transformations of the
other. 

The final sequence of lessons can be roughly divided
into three parts. Part 1 includes unordered tables of
values integrated with activities involving linear growing
patterns. Part 2 introduces another visual representation,

28 s DEC 2010 s OAME/AOEM GAZETTE 

s Call for Manuscripts
The Ontario Mathematics Gazette is inviting
manuscripts for all grade levels.
Instructions for submission of manuscripts
are found on page 1 of any OMG.
Contact the Editor for further details.

                     



graphical representations. In part 3, students compare
lines on a graph as precursory understanding for solving
equations of the form ax + b = cx + d. These three parts
were designed to help students transition from the
expectations outl ined in the Ontario junior and
intermediate curriculum to the expectations outlined in
the senior curriculum.

In the sections below, I will review some of the well-
documented difficulties students encounter as they
develop their algebraic reasoning. I will then outline the
components of the curriculum developed in response to
these difficulties. 

Patterns and Algebraic Thinking
In elementary curricula, algebraic understanding is

introduced through working with patterns. Patterns offer
a tremendous opportunity for students to explore some
fundamental algebraic concepts. For example, patterns
support students’ abilities to generalize. Patterns also
offer students a way of concretely exploring the idea of
systematic variation between two sets of data.

The expectation is that working with patterns will
support students to discover and articulate mathematical
structure. Students working with patterns are expected to
be able to describe the pattern, extend the pattern, and
identify the underlying structural rule (generalize). 

For instance, in the pattern above, most students are
able to recognize and describe the pattern as “you add
three more light square tiles each time.” Students are
also able to extend the pattern— the next “T” would have
one dark square tile and four light square tiles on each of
the three sides. The difficulty arises when students are
asked to predict how many square tiles would be needed
far down the sequence. For the tenth term, students
might rely on drawing the 4th, then the 5th, then the 6th,

and so on, adding one square tile to each arm as they
go. Asking for the 100th term highlights the problem of
this method. Students also cannot devise a general rule
that would allow them to predict the number of square
tiles for any term of the pattern. The problem with the
rule “add three each time” is that for any term number,
you need to know the number of square tiles in the
preceding term. This is known as recursive reasoning.
With recursive reasoning, only the variation in one data
set—in this case, the number of tiles—is considered. 

The pattern above can also be represented using an
ordered table of values. This is the strategy that many
students use to enable them to consider both the term
number and the number of tiles at each iteration of the
pattern. 

Ultimately, students learn strategies to figure out the
number of tiles from the term number, but the focus of
the study was to develop those strategies with
conceptual understanding.

Curriculum Part 1
The activities in this part of the curriculum, (i.e., the

lesson sequence developed) introduce students to linear
relationships via unordered tables of values and linear
growing patterns. Unordered tables of values are
introduced using a “function machine” type activity
(Willoughby, 1997) called the Robot Game. Teachers
and students take on the role of a robot that transforms
input numbers to output numbers by following a linear
rule of the form y = mx + b. Students call out input
numbers at random, which ensures that the resulting
“robot chart” is unordered. Students are thus forced to
look across the two data sets (input and output numbers)
in order to determine the pattern rule. The rule is
expressed as, for example, “the output number is equal
to the input number times five plus six” and written as
output=input x 5 + 6—which is structurally similar to 
y = mx + b.

Term Number Number of Tiles

1 4

2 7

3 10

Grades 4-8
• recognize, describe, generalize

patterns
• use graphs, tables, and verbal

descriptions to recognize 
relationship

• understand variables as changing
quantities

• represent patterns algebraically and
make predictions

Grade 9
• identify properties of linear

relationships
• investigate relationships between two

variables
• understand the characteristics of a

linear relationship
• connect representations—tables of

values, graphs, and equations
• understand the formula y = mx + b
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This numeric pattern activity is interspersed with
activities involving linear growing patterns. Students are
first introduced to the pattern below, built with square
tiles and including “position cards” at each iteration.

In this activity, students can describe and extend the
pattern as “add three more.” However, when asked for
the number of tiles for the 10th position, most students
correctly answer that there would be 30 tiles because 10
times 3 is 30. Students make the connection between
the ordinal position number of each term of the pattern,
and the number of tiles in that term. The position number
is not a label, it is a quantity—the position numbers
represent one set of data and the tiles represent the
other set of data, and the pattern rule articulates how the
two sets co-vary. In this case, unlike the case where
recursive reasoning is used to determine the number of
tiles for a far term or position, or for any position,
students can use the pattern rule that describes the
relationship between the position number and the
number of tiles—“the number of tiles is equal to the
position number times three.”

Students then work with more complex patterns like
the one below. Here, the pattern rule can be articulated
as “the number of tiles is equal to the position number
times two plus three” and written as “number of tiles =
position number x 2 + 3.” 

The multiplier, x 2, is represented by the light tiles that
grow by 2. The constant, +3, is represented by the three
dark tiles that “stay the same” at each position. Notice
that at the “zeroth” position, the multiplier is represented
by 0 tiles, and the constant by the three dark tiles.

By engaging in a number of Robot Game and pattern-
building activities, students learn that linear rules can be

expressed as the relationship between input and output
numbers in unordered tables of values, and as the
relationship between the number of tiles for each
position of a linear growing pattern. They are able to
consider particular instances of a linear growing pattern
and formulate a general rule. Students also make
connections between the Robot Game activities and the
pattern-building activities, and the different ways to
express the rules, so that “output = input x 3 + 2” is
linked to “number of tiles = position number x 3 + 2.” The
students recognize that both are representations of the
underlying mathematical rule. The following is an excerpt
from a transcript of a classroom lesson, during which a
Grade 6 student explained the connections he saw
between the Robot Game and building linear growing
patterns.

In pattern building, the input part is the position number
and the output part is like the pattern you build. So in
the middle is the operation or the rule you have to use.
So it’s kind of like the Input/Output (Robot Game). In the
Input/Output you have to use the Input, do the rule and
then you get the Output. The same with this one
(pointing to pattern), you have to use your position
number, do the rule, and get your answer and make the
pattern.

Graphs and Algebraic Thinking
Numerous researchers have documented the

diff icult ies students encounter when considering
graphical representations of linear relationships (e.g.,
Evan, 1998; Moschkovich, 1996, 1998, 1999; Brassel &
Rowe, 1993; Yerushalmy, 1991). Many students find it
difficult to connect the algebraic equation y = mx + b with
the graph and do not realize that the multiplier of the
independent variable is responsible for the angle (or
slope) of the line, and that the constant is responsible for
the y-intercept (Bardini & Stacey, 2006). Students find it
difficult to predict how changing the multiplier or the
constant in the equation will affect the graph. For
instance, most students predict that the line for the
equation y = 5x + 5 will be both higher and steeper than
the line for the equation y = 5x; students are unaware
that these two parameters (m and b) are independent
(Moschkovich, 1996). Because the two domains of
solving algebraic equations and constructing and
interpreting linear graphs are often taught separately,
students often treat the algebraic and graphical
representational domains as if they were independent. 

Another difficulty some students have is that they
tend to focus on individual points (like the y-intercept),
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but do not recognize the line as a representation of linear
growth (Leinhardt, Zaslavsky & Stein, 1990). 

Curriculum Part 2
When engaged in activities from the second part of

the curriculum, students learn how to construct linear
graphs based on their understanding of pattern rules. At
this point, the students use only the upper-right quadrant
of the coordinate plane, since the pattern rules include
only positive integers for both the multiplier and constant.
The position number cards of the growing patterns are
mapped onto values along the x-axis. The total number
of tiles in each position is represented by values along
the y-axis. One point on the y-axis represents the
number of tiles that would be at the “zeroth” position of a
growing pattern, the value of the constant, which is
graphed as the y-intercept. When constructing the graph,
students are given rules, such as “number of tiles =
position number x 2 + 3,” and asked to build geometric
patterns based on the rule. They are then asked to
calculate the total number of tiles at each position of the
pattern and draw a dot on the graph to represent how
many tiles are at each of the position numbers built.
Students therefore graph “ordered pairs”—position
number, number of tiles—without being explicitly asked
to do so. 

Students then build and create a graph of the 0th,
1st, 2nd, and 3rd position for three pattern rules that
have different multipliers and the same constant (y = x + 1,
y = 3x + 1, y = 5x + 1), and for rules that have similar
multipliers and different constants (y = 3x + 1, y = 3x + 3,
y = 3x + 5). For each set of rules, students are asked to
predict what the graph would look like (e.g., parallel
lines, lines with different steepness). The students build
all three patterns and graph them, and note similarities
and differences between the pattern rules, the patterns,
and the graphs, both within and between the two sets of

rules. Thus, students are given the opportunity to
explicitly consider how a change in one representation,
the numeric/symbolic rule, affects both the linear growing
pattern and the graph.

In the following transcript, a student discusses the
graph of pattern rules that have the same multiplier, but
different values for the constant. The student is able to
reason about the connection between the two
parameters of the pattern rules and the parallel lines on
the graph.

The lines are parallel to each other and that was my
prediction—that they would have the same steepness,
but have different heights. The multiplier decides the
steepness. If the multiplier is big, like times 9, then the
line goes steep, but if it’s lower, like times 3, it’s not
going to be that steep. The constant decides where the
line starts—so, like the height of the line on the graph. If
you have the same multiplier, all the lines have the
same steepness, and the constant decides the height of
the line.

Students realize that graphs model the rate of change
of the growing patterns, and that the higher the multiplier,
the more tiles are added to each successive position in
their pattern, and the steeper the slope of the line.
Students also developed an understanding that the
constant is represented by “where the line starts” on the
y-axis (y-intercept), since the number of tiles at the
“zeroth” position of a pattern is graphed at the vertical
axis, and only the value of the constant is represented
(Beatty, 2007).  

Curriculum Part 3
In the third part of the curriculum, to provide a

conceptual background for solving equations of the form
ax + b = cx + d, the lesson sequence is designed to
support students to think about intersecting lines as
representing the relationship between two linear rules. 

Students are given pattern rules and asked to predict
the position at which both rules would have the same
number of tiles. They are then asked at what x-value on
the graph the lines would intersect. 

When comparing two rules, such as 5x + 3 and 6x + 2,
students initially identify that both rules would have 8
tiles at position 1 (if they were linear growing patterns)
and that this would be represented by lines that intersect
at (1,8) on the graph. 
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Students then discover that when considering any
two pattern rules that have a difference of 1 for the
multipliers, the difference between the constants is the 
x-value at which the lines will intersect. For instance, 
4x + 2 and 3x + 5 have y-intercepts that are 3 spaces
apart on the graph, and the lines come together by one
space each time.  

Knowing how far apart 2 rules “start”—i.e., based the
values of the constants represented by the 
y-intercepts—and knowing the rate at which the lines
“come together” on the graph—i.e., knowing that if the
multipliers differ by 1, the lines come together by one
space at each successive x-value—allows for the
prediction of the x-value at which the lines will intersect.

The students further generalize this understanding,
realizing that you can work out the point of intersection if
you know where any lines start—the difference between
the constants—and compare the rate at which they
come together—by comparing the value of the
multipliers. For example, 3x + 6 and 5x + 2 start out 
4 spaces apart on the graph (the y-intercepts are 
4 spaces apart), but come together by two spaces at

each successive x-value. Therefore, you can figure out
that the lines will meet, or intersect, by x-value 2. 

This understanding can be used to solve equations of
the form ax + b = cx +d. Students are given rules in
standard algebraic notation and asked, “At what position
would the lines for these rules intersect?” At this point,
the graph is no longer the site for problem solving, but
instead, is used as a tool for checking and justifying
solutions. For example, John was given the equation 
2x + 16 = 5x + 1 and asked to predict the point of
intersection, which is, in effect, solving for x.

John: Well, I would see that the difference between
these two (the multipliers 2x and 5x) is 3 and
that the difference between these two
(constants +16 and +1) is 15. I know that 15
divided by 3 is 5, so I think it ’s going to
intersect on the 5th position.

Teacher: How would you check?

John: Try it out. So 5 x 2 is 10 plus 16 is 26, and 
5 times 5 is 25 plus 1 is 26. 

Teacher: What does it mean when you get 26 for both
rules?

John: Um, that’s the amount of each pattern and
that’s where they would intersect.

Teacher: But I thought you said they intersect at 5?

John: The 5th position! [pointing to the x-value 5 on
the graph] At the 5th position, they would both
equal 26 tiles—that’s like the number they
would intersect on. So it would be [drawing a
dot on the graph at (5, 26)] they would both
end up there.

In his explanation, John integrates multiple
representations by making a reference to pattern
building, that at the “5th position, they would both equal
26 tiles,” and the graph by stating that “they would both
end up” at (5, 26).  

If we think of ax + b and cx + d as two pattern rules
for which the value of the multiplier and the constant are
different, then the solution to the equation ax + b = cx + d
is analogous to finding the x-value at which the lines of
the two rules will intersect (or the position number at
which both patterns will have the same number of tiles).
To determine how far apart lines “start” on the y-axis,
students find the numeric difference between the values
of the constant, or (d – b). To find the rate at which they
“come together,” students find the difference between
one multiplier and the other (a – c). To find the position
number (x), they divide “how far apart they started” by
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“the rate at which they come together” or 
x = (d – b) ÷ (a – c). Students demonstrate a conceptual
understanding of why they carry out the operations of
subtraction and division, rather than just memorizing an
algorithm.

Conclusion
Current research indicates that there is a need for

instructional models that help students understand the
connections among representations of l inear
relationships (e.g., Greenes et al., 2007). The
instructional sequence described in this paper has been
shown to support Grades 4, 5, and 6 students in
developing their understanding of generalizing,
mathematical structure, and the connections among
representations of linear relationships. Results indicate
that these young students are capable of engaging in
algebraic thinking beyond current provincial elementary
curriculum expectations and can consider concepts from
the intermediate and senior mathematics curricula.  

In particular, the priorit ization of visual
representations seems to support students’ emergent
understanding of linear relationships. Understanding a
concept presupposes the ability to recognize that
concept in a variety of representations and the ability to
handle the concept f lexibly within different
representational systems. By uti l izing students’
understanding of patterns, the connections between
equations and graphic representations were made as
transparent as possible. Students were able to see how
changing a pattern rule resulted in changes in the linear
growing pattern, which then led to the ability to predict
how transforming a rule would also transform the graph
of that rule. This then led to an initial understanding of
comparing lines on a graph and using that understanding
to solve equations ax + b = cx + d.  

Preliminary results indicate that this may also be a
useful approach for students in Grades 7 and 8 (Bruce,
Ross, Beatty & Sibbald, 2010). However, more research
is required to determine whether an approach to
teaching linear relationships that integrates multiple
representations, and prioritizes visual representations,
can support the transition of middle school students to
formal algebraic instruction.

On the OAME website, CLIPS materials based on the
ideas in this article are available for use with students.
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